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Necessary and sufficient conditions are given for the almost sure convergence

of )1c quadratic form jjfjkMjMk where . is a sequence of i.i.d. p-stable random

variables. A connection is established between the convergence of the quadratic

form and a radonifying property of the infinite matrix operator
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I. INTRODUCTION

The aim of this paper is to study the convergence of the random quadratic forms

of the form
(1.1) .7. f -k M j

kj

where (f. ), j,k=l,2,3,..., is a real infinite matrix and (M), j=l,2,..., is ajk J

sequence of i.i.d. p-stable random variables with characteristic function exp(-ItIP),

0< p< 2 . Our results have obvious implications in the theory of double Wiener-type

integrals of the form

ff f(x ,y) M(dx)PK(dy)

where M(x) is a p-stable motion (cf. Szulga and Woyczynski (1983)). We shall study

them elsewhere.

We begin with a characterization of non-anticipating sequences (Vk) such that

the 'martingale" transform

T-" VkMA

converges almost surely. The necessary and sufficient condition here turns out to

be I IVkIP< - a.s., and moreover T converges a.s. exactly on the set (1IVk P <)

(Theorem 2.1). This applied to the sequence

k-1

Vk a j 1fj~

shows that the convergence of the off-diagonal part of the iterated sum

1(jY, fjkMJ)Mk

* j<k

is equivalent to the matrix operator (f )T being e -radonifying from tq intoP

tP (Theorems 2.2 and 3.1).

Finally we characterize the class of e p-radonifying operators (fjk)T from

tq into tP as satisfying the condition



1.2

I( IfjklP(l +' 1og lfjklpl <c
k j j

(Corollary 2.2). The proof of necessity of this condition was shown to us by Gilles

Pisier and is included here with his permission.

The above results permit the full characterization of all matrices (fjk) for

which the quadratic form (1.1) converges a.s. (Theorem 4.2). Ve would also like to

mention here that the infinite quadratic forms satisfy a fairly general 0- 1 law

(cf. de Acosta (1976)).

Our results should be compared with the case where the M. 's are i.i.d.

Gaussian, i.e. when p =2. In this case Varberg (1966) has shown that the conver-

gence of the series kand .jk is necessary and sufficient for the quadra-

tic mean convergence of (1.1), and the above conditions imply a.s. convergence of

(1.1) as well. Moreover Lemma 3.7 of Rosinski and Szulga (1983) in conjunction

with Kahana's (1968) inequality shows that the conditions are also necessary for

a.s. convergence of the Gaussian quadratic form.

In Section 5 we include some auxiliary results and a conjecture of indepen-

dent interest.

'I
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2. MARTINGALE TRANSFORIS AND CONVERGENCE OF STABLE TRIANGULAR QUADRATIC FORMS

THEOREM 2.1. Let Vk =Vk l,..., Mk _ l , k=2,3,..., be a non-anticipating sequencr

of random variables. Then almost aurely

{. VkMk converges} ={. IVkIP <}

Proof: Let Fk = a( l ..  Mk), and

G(x) = P{ I1 I > x} - cx- p

as x- , c>O. Also let us set

A={ VkMk converges},

--={7 IVklP<m}

and

C n {IVnMn > } n=2,3,.

Then we have that
Ac{C .}l )y<n-i

AcC{Cn i.o.F P)Cnn < a.s.

where the equality is implied by a conditional form of a Borel-Cantelli lemma

(cf. Breiman (1968), p. 96). Since

P(CnIFn_I) =G(l/IVnI )

we get that G(IVn-I).*o a.s. on A as n m. Therefore, for sufficiently large N=N()),

nO -1)I~~~!I IP' I nl <
Sn=N n=N

a.s. on A. This shows that P(A\B) =0.

Now we shall prove that P(B\A) =0. Let n = i (',w) be a regular conditional~n nl

- distribution of VnMn given F n_ 1  We have that

_ nEChE,w) =P(VnMnc EIMI, . , Mn1I) = pCV-l (w)E)

where up is the distribution of Ml. By a theorem of Hill (1982), 1 V n(W)M n(w)

converges for almost all u's for which the series Yx(w) converges in probability
° n

:I - " o • • ", 
° ' " . o 

%. 
"



2.2

P', where fXn(w,) is a sequence of independent r.v.'s (defined on another proba-

bility space (9',P')) with distributions {IT(-,A)1. In our case the X(w),s have

n n
characteristic functions exp(-IVn (w)PtP). Thus P(B\A) =0 which completes the

proof of the theorem. n

Theorem 2.1. enables usto translate the problem of a.s. convergence of quadratic

forms into a more tractable problem of the a.s. convergence of series of independent

random vectors with values in Z, whose standard basis is denoted by (ek), k=l,2, ....

THEOREM 2.2. Let (fjk:l j s k-l, k >- 2) be a triangular matrix of real numbers, and

def (0, 0,f jj+lfjj+ 2 , .. ) =k=j+lfjkek j=l,2,... . Then

ok-1

Ix ifj~jMk-l
k=2 j=lii

converges a.s. if and only if for every j=1,2,..., x. e1 crtnd the vector random

series I x.iM.i converges a.s. in tP.

Proof: Setting Vkfjj-1 f M., k=2,3,..., Vl=0, by Theorem 2.1 we have thatk j=1 jk j'

the series I VkMk converges a.s. if and only if JIVkIP <oo a.s., which is equivalent

to the a.s. convergence in 4P of the series .ekVk

Now assume that S =ekVk converges a.s. in tP. Since

n+1 n n+l
1 ekV k = I ( 1 fjkek)Mi,

k=l jul k=j+l

Proposition 5.1 applied to x. Mkn+ f and Y. = M., gives thatjn k=j+l jkek' j j

X =go l f e k49 p as n--, and that the series I x.M. converges a.s. in
=n -j xk = ok=j +1 jk k i .

Conversely, assume that x f e 'E tp and I x.M. converges a.s. in 49.
j 'Yk=j+l jk k

The operator

tP 31x -Rn(X W I <x ,e k>e k E p ,p>O

k=n+2

is continuous and linear and Rn(x)-+O in 4P for every x as n-. Thus a.s.

.. ..... .. .. . --.- .



2.3

0 R~( xM) = R (x.).=~c~ Ekk + x xM.
3u =1 -k--n.2 j=ne1 J

Hence,
n
I ( Y. fjek)Mj--

3=1 k-n+2 k)MO

a.s. in tP as n-b.o, and thus

n~l n n 0
A= kk= x~M fjk ekOM

k~ j=1 im j=l k--n.2

converges a.s. in Zr'.

- ~ %



3. CONVERGENCE OF p-STABLE RANDOM SERIES IN tP

AND 0 -RADONIFYING OPERATORS
" p

Definition 3.1. Let O< p< 2 and F be a continuous linear operator F:s -tP,

where s is the space of sequences with finite support for 0 < p : 1 and s =tq,
1/q+l/p=l, for l<p<2. We shall write F=(fjk) where f jk=<Fej e k>, j,k=l,2,...,

so that Fej =a k fJkek" We say that F isin the class tPlogt(tp) if for each

j=1,2,..., Fe. e p and the tP-valued sequence (Fe.) is in tPlogt. In other words,

Fe Plogt(Lp) if and only if

SN(F) z IIpe. 11Pl I log 11Fe 11 p 1
j ,p Jp

- ((I d fk'P)(1 + 11og 1 lfjklPI)1< .

j k k

One can introduce on tPlogL(Lp ) -an Orlicz type norm in the natural fashion.

THEOREM 3.1. Lot O<p<2andxj==l fjekeLP , j=1,2,..... Then Yx 1.1

converges a.8. in tp if and only if FT , (fjk)T E

Proof: Sufficiency. Assume FT e t logL(t ). We shall prove that the assumptions
p p

of PropositiOn 5.2 are fulfilled for the series with general term k = 'f Jk?'JP'

which has the same distribution as (XjIf jkIp)IMl1 p. Indeed,

I P(Wk > 1 ) = I P(1M1 I >(I IfjkIP) - / p ) s Const 11 If jkP<

k k j jk

since, by assumption, IkyjifjkIP<0 and 1jIfjkIp0" as k oo. Therefore (5.1) of

Proposition 5.2 is satisfied.

Now,

B= 'I E(WkI(W k !5 1)1 = M I f jk IP)E( j l lp 1( j . I
I 5(jlfjklP)-l /P)

k kj j

Denoting the distribution function of l1I by 0, we get that for a> 1

OJ'0u Pd(u) S: I + aPf(a)- 0(l)- f'..puP'(u)du



'_ W.t. t.r _. -- - . - -

4 3.2

S I + aP*(a) '0 (1) pu (I - (c/uP)l du

since 0(u) = I - P(M I  > U) 2! 1-Cu -P for u -1 and certain constant C. Thus because

(ZP(#(a) -1) remains bounded

JolulPdf(u) T Const (1+ log).

It follows that
t~ ~ ~ ~ B SConst I Y.JjJ(1Io Ifk])

kj 
j

so that Condition (5.2) of Proposition 5.2 is also satisfied and as a result

1kI j fjk"3I p < , a.s. It follows that Yk(Ij fjkMj)ek converges a.s. in 0 and in

view of x. =1k fjkeke t, we have that j xjM. converges a.s. in

Necessity. (The basic idea here is due to Pisier). Assume that I x.!4. = Y (Fej),jJ J

converges in L a.s. By the representation for stable processes obtained in Proposition
p

1.5 of Marcus and Pisier 1983) and used here in the discrete paramater case (in the

case of lsp<2, Corollary 3 of LePage, Woodroofe and Zinn (1981) would suffice) x.M. con-

verges in IP a.s. if*and only if e i Y i r I/p converges a.s. in tP, where (E.) arc

independent Bernoulli r.v.'s, (Y.) are i.i.d. r. elements in tP with law

L(Yj) =Const IlxklPi xk/llkll ,2

and j _ +... +Xk where X1 , X 2 .  are i.i.d. with P(Xl >u) =e-u. Moreover the

sequences (c),(Y ),(r.) are independent of each other. By the law of large numbers,

r /j -+l a.s. Applying twice Fubini's theorem and the comparison principle in quasi-

normed spaces obtained in Theorem 4.4 of Marcus and Woyczynski (1979), we get that

the -1/p
the series .x9Mj converges in 0 a.s. if and only if I cjY-p does. What is

useful about the latter series is that it possesses all moments in contrast to the

?,- former.

*..%. * **'



3.3

Therefore for O<p< 2 , and x. =Fe., j=l,2,...,

> EIIjj' .Y. jIIp = I El. J-I/pE.YjklP
j k j

(2.2) > Const I E(j j-2/pYk2 )p/ 2

k j Ak

2t Const I E(sup-1/PlY jkl) p

k j

by Khintchine's inequality (Yj = jlYj2,..)).

If C denotes the class of all stopping times, then for all k,

Elsup j-1 /pYjkIP>-sup ET 1lYTkIp - Const E(IYlk PloglYlk1 )
j TEC

by Chow, Robbins & Siegmund (1971), p. 97 , where the last constant can be chosen

greater than 0 (uniformly in k), since in our case

L(Yjk) =Const I IIFei l l p <FeikFei "

Therefore E(IY)PlogY 1I) ifikIp  lo ifeik I p

lk o  k )  i IFel log IlFeilp • p

so that finally we get from (2.2) that

Y If jklP log If k l  < G
k j Y Ifjkl p

k

which certainly implies that FTE tPlogt(tP).

COROLLARY 3.1. Let Ik lfjkIp<-. Then 7jlkfjk'.P <c -a.s. if and only if

j{((IklfjklP)( 1 + 11og7kifjklPl)l <-'

Now let l<p!2 and let 8p be a cylindrical measure on tq 1/p+1/o.=l,

generated by the sequence M=(Mi), iI,2,..... The characteristic functional of

0 is given by the formula
_pI~

S i<x 'y> 0 (dy) =e x r)P

- ~ iK*KL I2<i~jr~iijP



3.4

Definition 3.2. Let E be a Banach space. A linear operator F:tq -+E is called

0 -radonifying if exp(- 11 F*y* 1 P), y*F E *, is the characteristic functional of a
p P

Radon measure on F. We denote by R p(qE) the class of all such operators.

The class R2( 2,E) has been extensively studied. The main result is that

12(t2,) =R2 (t2,E) if and only if E is of cotype 2 (cf. Linde and Pietsch (1974)),

where 1Ip denotes the ideal of all p-absolutely summing operators. For l< p <2

it has been proved that if 1 < r < p then I1 r(qE) c Rp (tqE), and that

Ip (£q,E) c Rp (qE) if and only if E is isomorphic to subspace of LP and is of

stable type p (cf. Linde, Mandrekar, Weron (1980), and Thang and Tien (1982)).

From the now classical results due to Ito and Nisio (1968) it is easy to deduce

the following.

THEOREM 3.2. Let l<p!S2. The following are equivalent:

(a) FE R p(qE);

(b) F*:E*,g p is decomposable in the sense that there exists an E-valued,

strongly measurable random vector (FM) such that

<F*y*,M>= <y*,FM> a.s., y*EE*;

(c) The series Fe)M. converges a.s. in E, where (e.) is the standard

basis in tq.

The above equivalences are heuristically better understood if one keeps in mind

the following "identities":

yi~k~k<TY,ek> e-k <T*y*,ek>jP -IIT*y*I1p

Ecl<T'y*,M> = Ee =e =e

In view of the above remarks every r-absolutely summing F, l< r< p, is 0 -

radonifying, but there are p-absolutely summing F :tq p which are not 0 -radonifying

since tP is not of stable type p. The corollary below, obtained immediately from

Theorems 3.1 and 3.2, reflects this fact and gives an analytic description of 0 -
p



3.5

radonifying operators F from qbp

COROLLARY 3.2. [R p t~p] tlg p



4. CONVERGENCE OF GENERAL QUADRATIC FORMS IN p-STABLE RANDOM VARIABLES

Let

4 Q~ k l  j=lfjk~j~k , n=1,2,...,

k=1 j=1

where (M.), j=1,2,..., are as above i.e. i.i.d. with Eexp(itM) =exp(-ItIP),

O< p< 2. Denote the diagonal and off-diagonal parts of Qn respectively by

n 2 n
Dn= I fkk and Rn= I f. M.M k

kzl k,j=l jk j k

k~j

The diagonal part, being a series of independent random variables, is easy to

handle.

THEOREM 4.1. The sequence (D ) converges a.s. as n -)-- if and onlj if
n
kl Ikk p 2 <"

Proof. Let us observe that 2 PJfkkJ >I) <" if and only if 'IpkkIp/
2 <_

KoluDgorov's three series theorem gives now the "only if" part of the claim. The

proof of the "if" part follows directly from Proposition 5.2 because for p<2 and fkko0,

ElfkkI=I(Ifkk S< 1) = JI(Mf >t1fl(l1)dt< lfkkIP/2 flt-P/2dt = Const Ifkktp / 2 . 0

The above result and the results of previous sections give the following.

THEOREM 4.2. The sequence of quadratic forms (Q) converges a.s. as n-*° if

and only if

I Ifkk Ip / 2 <_

k=1

and
Sk-1 k-1I Ifjk +fkj 1p)(1 + 1 g If.k' +fl ~p)<

k 2 j=1 j=l J

Proof: The above result is a straightforward corollary to Theorems 4.1, 2.2,

and 3.1 and to the fact that the sequence (Qn) converges a.s. if and only if both

I - ' '-" %. ' ,, . I,
"

-% % "-% % ", '' % ' '',' ' '-.." ' ' ' '- - -"2RL- - . . • . -



4.2

sequences (D n) and (R n) converge a.s. We prove the only if part of this latter

assertion.

Let a,b be reals with a &0, and set C =sign(b/a). Then for M=M 1 , we have

2 2 2
P{IaM +bMI >I} =P{ Ia(cM) +b(EM)I > l} =P{I I atM + bIM I > 1}

-P{I IaIM2 + IbIMI >1, M>O}
(4.1)

=P{IaIM2 +IbIM>l , M>O

>P{M> lal "I /2 } = ( PIMI > wahel/2}

Assume that (Qn) converges a.s. We have Qn = Ykl(Vk + fkkMk)Mk where

V =7k-1(fj k) kz-2, V =0. By the conditional Borel-Cantelli lemma (cf.

Breiman (1968), p. 96), the a.s. convergence of (Qn) implies that

Ii p( I~k~k  21 >I1 IM,., k l <co a.s.

k=l

* It follows by (4.1) that 2 P{IfkkM21 >1} <_, where the sum extends over all k for

which fkk#0, which implies that Ykw=llfkkIp/ 2 <0a , in view of the tail behavior of the

MkIs. Now, by Theorem 4.1, Dn converges a.s. and by the assumption Rn =Qn -Dn con-

verges a.s. as well. 01

In view of Theorem 5.1 below and of Theorem 2.1, we have the following corollary

on the convergence in Lr , r <p, of the off-diagonal part of the quadratic form.

COROLLARY 4.1. If 0<r<p and

-k-l
k!( j Ifjk +fkjIP)r/p< m
k,,2 j,,l

then the sequence Rn - nJJ fjkMj converges in L r and a.o.

Proof: Here is a direct proof which does not use Theorems 2.1 and 5.1. By

the martingale property of Rn we have, with Vk= Xk-(fk +fkj)M, k 2, VI =0,

n k . ..... . . 1 -



Z W T- 7 V -jb

4.3

n n
EIRn-Rm+lr-EI .Vk NI 1<Const I EIVkA I

k=M k--u

n
=Const . EIVkIrEIMk

Ir

k=m

n k-i

=Const n ( , ifjk+fkjIP)r/p
~k=m j=l

which proves the corollary. U

*hc h

'v r. r j~~** %**

*e )* A .



S. AUXILIARY RESULTS

The proof of Theorem 2.2 relies on the following technical property which,

roughly speaking, justifies the change of the order of summation in the series

yj (yk>j fjkek)Mj"

PROPOSITION 3.1. Let E be a complete metric linear space, Xjk E E, n,j=l,2,...,

and (Yj) a sequence of non-zero independent synmetric real random variables. If

n
Sn a jx. Y .S

in probability as n-- then there exists a sequence (x.) c'E such that for each j,

xjn -1.xj as n-s and the series I xjY j conerges a.s. to S.

Proof: Let 1111 bea monotonic F-norm on E, i.e. I111 Ilxil for l al 1

(which always exists by Rolewicz (1972), p. 16, Theorem 1.2.2). Fix j2!1 and let

a,b>O be such that P(IYjI >a) >b. Let £>O. For r2n2j we set c(r,n) =1 if

II a(xjr - Xjn)II > c and c(p,n) -0 otherwise. Since for a symetric pair of r.

vectors X,Y in E,

P(lIXll >c)f.2P(l I (X.Y)ll > 
we obtain

n

b'c(rn)P{11Y (x j )II> 0S2P{II kx kn) >

S4P{II (Sr - sn  11 > 4

It then follows from the assumption that c(r,n)--0 as r,n-sm, i.e. {x jrI as a

Cauchy sequence for every j, and by the completeness of E there exists x c E such

that x jnx as n+ .

Let now c > 0 and let N be such that

P(II 1 (s r - Sn) II > 'E C

for every r k n k N. By the symetry argument used above

! '" =.. :/. : : : . ::. .:.: .: .L z.,,-.:.- ";-"--:'"-. ?
fo" '. r y i#, ;.;¢ .Ne ; .. . .... . .,:/. ,3 .: ::',':'.,



.- ' S.5- ~ - -~. . * ~ S. - - - - 7 X -S

5.2

n

j1 l Y j xj j) C

Keeping n fixed and letting r-o'- we get

n

j{ l x 12 ):

Thus I ~ 1Sin probability and, since the Y's are independent, also a.s.

The following elementary proposition (cf. Szulga and Woyczynski (1983)) is

used in the proof of Theorem 3.1.

PROPOSITION 5.2. If for a sequence (W k of reat random variables

(5.1) lkPdWk I > 1)< -

and

(5.2) Ek~lWk l :5 1) 1 <~

then 1IWkI <- a.s.

Proof: Indeed, let Yk -Wkl(IWkIl ). Zk Wk -Yk.- Then IWk =lYk I +I ZkI.

lkiconverges a.s. since E0IjYkj) <-o by (5.2), and Iln converges a.s. by the

Borel-Cantelli l emm A. 0

We now establish a more precise criterion for summability of stable r.v.'s

which is used in Section 4. For a symmetric p-stable r.v. X the quantity cX is

defined by Eexp(itX) nexp(-cXltIP) and satisfies

and for independent symmetric p-stable r.v.'s (Xk)V

(S.3) a jam 1JPCX



5.3

Definition S.1. The r.v. 's (Xk) are jointly symetric p-stable if for every

sequence (ak) with a finite nunber of nonzero elements the r.v. Ykakk is symmetric

p-stable.

THEOREM 5.1. Let (Xk) be jointly symetric p-stable r.v. 's with 0 <p< 2 and

let r >0. Then a necessary and sufficient condition for

I IXkI r <- a.s.
k=l

is that for some 0 <s <p,

E( I IXkIr)s < ®  when O<r:1~k-1

and
, E( [' 'l00 lr s/r < °  / ~

E( I IX kI < when I< r
k=l

Proof: Assume X =(Xk)kt r a.s. and define $:f-L by t (w) =(Xk(w))k =X (w)

if (Xk(w))k .ir and t(w) =0 otherwise. Then 0 induces a symmetric p-stable measure

S=Pot- on e. For x= X(k)k 6rI define q~x) = kI r when 0<r:1 and

q(x) = (IklXklr) / when r >1. Then q is a measurable seminorm on t r (a norm when

r2:1) and by Theorem 3.2 in de Acosta (197S) we have for 0< s< p,

E{q(X(w))1 =Jgq(X(w))dP(w) f qs(x)dv(x) <- .

The converse is clear. 0

When I < r < p< 2 we can take s - r and the necessary and sufficient condition

becomes

ElXklr <W or I crp<co
k!i k-l Xk

i | ? ,N ; p .,,.,.- -..-.:.... ..:.;.:. -... . ....--..-.-.-. .:::.-.. . ... ..-,-".. ... .-.....



5.4

When r =p, Theorem 5.1 gives

(5.4) k IXkIP<- a.s. if and only if E( I IXklP)s(lA <- for some 0<s<p.
kzl k=l

This necessary and sufficient condition simplifies to
0

(S.5) Ilcxk(1 + Ilog cxk ) <cc

k=lk k

when the XkI's are independent, by Schwartz's theorem (cf. e.g. Woyczynski (1978),

p. 277), and when the Xk's are of the form Xk=1j fjkMj, where the MjIs are indepen-

dent (cf. Corollary 3.1 and (5.3)). Since every sequence of jointly symmetric p-

stable r.v.'s (Xk) is of the form Xk=lJfk(t)dM(t), k=l,2,..., where M(t), Otsl,

is a stable motion (i.e. has independent stationary symmetric p-stable increments)

and (Jfkt)IPdt <-, k-l,2,... (cf. Kuelbs (1973)), we conjecture that (5.5) is

always a necessary and sufficient condition for (5.4).

4.__.

_: 1g

4. . :,..;r.', -s,, , ,r~ :,.,-,-,_,-,.,., , . . .,-.A ... .. _ -0. . . . . .. ..
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